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A GRAPHICAl, SIMILARITY MEASURE FOR TIME SERIES MODELS

Benjamin Kedem
University of Maryland, College Park

Abstract

The oscillation in time series can be represented by counts of axis-

crossings in the series and its differences. These counts are called

higher order crossings and display a monotone property whose rate of in-

crease discriminates between processes. Only very few of these counts

are needed for effective discrimination as shown by plots of higher order

crossings obtained from real and simulated data.

Key Words: Oscillation, Spectral, Probability limits, Axis-crossings,

Stationary.
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I. Introduction

The purpose of this note is to introduce a graphical device useful

as a measure of similarity or as a goodness of fit criterion for hypothe-

sized time series models. It is based on the actual oscillation observed

in time series as depicted by axis-crossings and higher order crossings.

Higher order crossings (HOC) are axis-crossings of differenced time series

and are closely linked to the spectral content of the series. In fact

under the Gaussian assumption, to which we shall adhere, HOC determine

the finite dimensional distributions up to a scale parameter given that

the mean is zero. The main advantage of HOC is that they are easily ob-

tained from an observed series and that only veryfew of them are needed,

as the discriminatory power in HOC usually diminishes with their order.

Higher order crossings in time series discrimination were discussed

in Kedem and Slud (1981), (1982),where a certain goodness of fit criterion

is suggested. Here however the emphasis is on a graphical device rather

than a single test statistic. This graphical method may be shown useful

in answering the question "Does a given time series oscillate as a certain

hypothesized model?' Some examples with real and simulated data demon-

strate the use and potential of this method.

.
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2. Definition and Properties of HOC

Let {Zt 1, t =0,±i,..., be a zero mean stationary Gaussian process

with correlation function p. and spectral distribution function F. The

higher order crossings of order k, DkN, is the number of axis-crossings

by

vk-z 1 .... ,Vk-zN

where V is the difference operator

VZ = Z - Z
t t t-l

k k-1 0
and V z t  V(V Z Since V is the identity operator, D is the

tt 1,N

actual number of axis-crossings by Zl1... ZN .

A more precise definition is constructed in terms of

k-i
(k) - , k=1,2,

0, otherwise

and

(k 1 - X(k) (k)

d(k) = t Xt-i
t 0, otherwise.

We define formally the higher order crossings of order k by

D (k)+ .+(k).
k,n 2 N

taken in regard to the differencing of finitely long records. Each time

a finite series is differenced an observation is lost so that if k higher

crossings are desired the time index t =1 is given to the k'th or a

later observation and we shall follow this rule.

°.1
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0i
I Consider the following example. Suppose the series Zt is given by-1 .4 -3 .6 -. 3 -.8 1.2 -1.3 -.4 -1.1.

In order to deriv the ofirst three HOC Dxm,6e D2,6 D3,6 we have

t 1 2 3 4 5 6

Z -1 .4 - .3 .6 - .3 -.8 1.2 -1.3 -.4 -1.1
'C...(1) X 0 1 0 1 0 0 1 0 0 0

VZ 1.4 - .7 .9 - .9 -.5 2.0 -2.5 .9 - .7

, 1 o 1 0 0 1 0 1 0

.4 V z -2.1 1.6 -1.8 .4 2.5 -4.5 3.4 -1.6

X(3)o 0 0 1 1 0 1 0

and D1,6 =2, D2,6 4, D3,6 =4 and we say that D1, D2, D3 were derived

from a series of length 6. It is seen that counting symbol changes in the

clipped binary series is equivalent to counting axis-crossings in the cor-

responding series. Thus D1 6=2 since there are 2 symbol changes in

X l ) . X 6 or equivalently 2 axis-crossings in Z1,...,Z 6 . It is in-

teresting to observe that while D 1,6 is the number of crossings, D2, 6 is

the number of peaks and troughs in Z1,... ,Z 6 .

The fact that the correlation structure in {z t is completely deter-

mined by the sequence

[ED.

is due to the basic relation

/T ED.

Scos( _L_)N (I)

whose extension is given in (2) by considering the first correlation in V kzt

.4
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,IED.1 ,A .2k)+ P1  2k)+(2k) - . _. k

N- I 2 ( 2 p 2k + + (-l)k2p (2)

From (1) and (2) we can determine pl, p2, p3 .... recursively. (See

Kedem and Slud (1981).) (2) can also be written asTr
cos(w)(sinlM) 2kdF()7TEDk+I, N fCO = r.- (3)

N-1 fr 2k
(sin w) dF(w)

f-_r

which is referred to as the higher order crossings spectral representa-

tion and relates the sequbnce {EDN to F. This spectral representation

has been recently studied in Kedem (1984) in some detail, where it was

shown that

ED ED - "'" : (N-1). (4)
1,N~ 2,N

It follows that {ED. I is a monotone increasin and bounded sequence

and therefore converges. It can be shown that

3 t, j (5)

N-1

where w* is the highest point in the support of F, that is, the highest

frequency in the spectrum. Therefore

ED <ED : ... -- (N-1). (6)
I,N 2,N 7T

In practice most series contain noise and w/* - ,. When w I lthe in-

equalities in (4), (6) are strict. It was shown in Kedem and Slud (1982)

that when w is in fact included In the support of F then the actual

-."-, .",... ."-..-" "" -d"el"" . .-" ". %' ''-'- L -- e ) 2":".."-...°.... .:.e. .... ': '.z? .1.2 °...... ..2..
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sequence fi., is monotone increasing provided N is sufficiently large.JN

Now it is this monotone property of HOC which we would like to

utilize. More precisely, we wish to demonstrate that the initial rate

of increase in the D as j -U is rather fast and carries discrimina-
j,N

tory information as different processes display different rates of in-

crease in the D. for small j and fixed N. As j increases this

discriminatory potency decreases rapidly and similar rates are displayed

by many different series. In this sense only very few I) are neededj,N

in achieving effective discrimination.

It should be noted that from (2), (3), the information contained

in (EDj, N j=l is equivalent to that in {pjl and consequently that in F,

the normalized spectral distribution function. But the information

manifested by the EDJN presents a -ferent angle of view and another

way for the interpretation of stationary time series. HOC provide an-

other dimension in time series analysis, which addresses the oscillatory

content in time series directly by counts of visual features.

I%

• ." J
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h° ..



6

3. An Approximation to the Variance of HOC

As we shall restrict our attention to the rate of increase in HOC

it is necessary to determine beforehand the variance of Dk,N' k = 1,2,...

In general this variance is a function of 4'th order orthant probabili-

ties wnizh are not easily accessible (see Reed (1983)). It has been ob-

(k)
served however that in many cases the dependence in the {d I for low k

is rather weak as expressed by very low correlations, unless the original

series {Z I displays extremely large absolute correlations. Thus as a
t

first approximation we suggest treating {d k)I as a binary Markov chain.

This simplification leads immediately to a computable expression for

Var(Dk,N) which, as we shall see, provides a rather close approximation

to the true variance.

Define

(~k) EP(X (k) -I X (k) 1

p( ECorr(Vzt Vkzt_.).

Then from (1) or (2) we have

(k = I-1 (k-1)
+~k  = _ sin P(7)

J- jI

Observe that because of (1), Pk) is precisely given by (2). The two

(k)
parameters which specify {d~ ) are thus given byt

p (k) E P(d(k)=) = 1 _XJk) (8)
t

(k) (k)I -2,\Ik +A(k

(k) (k2) W+2
= P(d k I d t ) k. . - (9)

2(1-> )

p..
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Therefore using standard arguments from the theory of Markov chains (see

Karlin and Taylor (1975), Ch. 2) we have the approximation owing to the

fact that D = d (k) + ... + d (k)

k,N 2 N

(k) (k) 2p(k) (k)(\(k) (k)) f
Var(DkN) = (N-)p k q + (__ - (k)) _(N-1) Vk, N  (10)

where

kN= q(k)[ 1 - k (k) N-i 1

kNq (k

and q ~k) -1 _p&k) Usually Vk,N is negligible compared with N and may

be omitted. Thus, a useful approximation to Var(DkN) is

(k) (k)I(k (k 1 ~ )(
Var(D ) . (11)

k,N (NlPkqkL -

From a given sequence 01 ,P2, .. ,OK we compute Var(D k,N  =I ..

K-I as follows.

(i) Obtain (k) from (2), k =0,1,.. ,K-1.

(2k) n((2k) 2k)} t(2k)( 2k-P2 + . + P*
1  - 1 k_. k---. . . ..-......... ... .. .

k-i

(k)Then p2  is given by

,"(k) - I + 2P - 2((k+l) (k)
2 2 1  -2 P

(k) (k)
* ~(Ii) obtain X ~, from (7), kl..K1

1(k) + 1 - (k-1) (k) I + *-1 (k-1)
-1 2 =T ' 2 2 2

--.-
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(k) (k
(iii) Obtain Pk, V k , from (8), (9), k=I,...,K-l

(-2k) M k

p(k) (k) (k) 1 2
2 ( -Ak))

(iv) Substitute in (10) to obtain Var(Dk,N), k =1,...,N-1.

The above algorithm results are compared in what follows with actual

estimates in the estimation of Var(D,[=0 0 ) ... ,6 for several

series. To apply the algorithm one needs to supply as input only pr,...,p 7

and N. (A computer program which takes as input PI,...,P 7,N and gives as

output E(D,) and Var(D.) is available upon request.) When an hyl)othe-
j,N ,N

sized model is entertained these parameters are usually available as is

the case for example when the hypothesized process is white noise or any

specific autoregressive moving average. The experimental results were ob-

tained from 100 independent realizations of size N =1000 each and are

summarized in Tables 1, 2, 3. Note that ED., 10 0 0 is available exactly

and does not depend on the Markov assumption. The tables also compare

ED. with their estimates as a check on the simulation results. Itj, 1000

is seen that EDj 0 0 and ED, 1 0 0 0 are very close throughout. In parLicu-

lar, {Var D obtained from (10) agrees well with actual estimates
j, lo00

obtained from these 100 realizations. We note that throughout our simu-

lation V in (10) ranged in value from 0.663 to 1.247 but most often
k,N

its value was around 0.9, which is very small compared with N = 1000. In

specifying a model we use the notation as in Box and Jenkins (1970). For

example, AR(1) with parameter means Zt = q)7 t-I + Ll hut MA(I) with

parameter 0 means Zt  uL Oi utI where ut are N(0,0) independently (I is-

tributed. It should be noted that all our results concerning HIOC are scale

2
free so that the actuat magnitude of C is not imrpor mt .

U
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00

FIRST ORDER MODELS

Series j ED. ED. {Var D ,1000}  (Var D 000 }* j,1000 j ,1000 j,I0 j ,1i

:rom (10) from 100
realizations

White 1 500 497 15.81 15. ')6
Noise 2 666 666 13.15 13.63

3 732 732 12.16 12.53

4 769 770 11.57 11.49
5 794 795 11.18 11.05
6 813 814 10.82 10.00

AR(1) 1 333 333 15.74 15.58
2 580 582 14.00 15.03, =0. 5
3 685 686 12.72 13.11
4 740 740 12.00 12.08
5 774 774 11.49 1-1.23

6 797 796 11.09 10.00

1A(1) 1 369 371 14.17 14.59
2 553 551 12.44 12.276 =-0.5 3 640 639 11.91 12.48

4 694 693 11.66 12.22
5 732 731 11.44 11.40

6 759 759 11.22 11.02

Table 1. Comparison of Var D, }2 from (10) and the estimate
j',1000

obtained from 100 independent realizations each of size

1000 given in the last column. ED, 10 0 0 are rounded to

the nearest integer.

[L2
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SECOND ORDER MODELS

Series j ED 10 0 0  ED {Var D. 2 Var D 2
., 00 J, 1000 D, i0 0 01 ta j, 10

from (10) from 100

realizations

AR(2) 1 333 333 12.00 10.83
2 460 460 11.87 11.07

i 3 562 562 12.40 12,58

2 =-0.5 4 646 649 12.65 13.58
5 708 709 12.25 12.57

6 751 751 11.79 11.91

MA(2) 1 342 343 18.33 17.76
2 648 649 17.66 18.06
3 782 784 13.82 13.71

S=-0 .8 4 835 836 11.40 10.49
2 5 857 858 10.24 9.56

6 868 869 9.74 8.71

AR(2) 1 424 425 9.64 9.67

2 484 485 9.38 9.13
3 536 537 10.29 10.81

0.7 4 594 594 11.27 12.72
5 651 652 11.87 12.02
6 702 701 12.04 11.34

Table 2. Comparison of {Var D i0 2 from (10) with the estimate
j,lOOO

obtained from 100 independent realizations of size 1000

given in the last column. ED i,1000 are rounded to the

nearest integer.

Ik .%

.A
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MIXED MODELS

Seis j ED. ED. {Var D. P {Var DSeries j,1000 , 1000 J,1000 , i000

from (10) from 100

_real izat ions

ARMA(I,-) 1 552 552 14.62 14.74
2 679 679 12.96 12.87

3 737 737 12.09 12.05
0 =0.7 4 773 772 11.27 11.52

5 797 797 10.70 11.12
6 814 814 10.15 10.80

ARMA(I,I) 1 235 234 13.17 12.67
2 432 433 11.59 12.073 544 544 11.42 11.25

0 =-0.7 4 615 615 11.04 11.07
5 663 665 11.26 11.05

6 698 699 10.65 11.03

ARMA(2,2) 1 884 883 10.04 10.51
=-1.4 2 897 897 9.20 9.53

¢2 =
- 0.5 3 903 903 8.84 9.01

81 =0.2 4 908 908 8.60 8.50
0 2 =0.1 5 911 911 8.43 8.47

6 914 914 8.29 8.38

Table 3. Comparison of {Var D j,1000I from (10) with the estimate

obtained from 100 independent realizations of size 1000

given in the last column. ED are rounded to the

nearest integer.
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4. Probability Limits for HOC

The asymptotic distribution of Dk,N , as N-*o , can be found under

standard moment conditions without recourse to the Markov assumption

which we only needed in getting an approximation to the variance of HOC.

For any finite moving average series {Z }, {d k  is m-dependent for some
t

finite m which implies (Diananda (1953)) that the asymptotic distribu-

tion of Dk, N as N -- is normal. More generally, since Z t } is Gaussian

the condition X Pk < C implies the asymptotic normality of DkN for

any finite k. The proof of this fact uses a method suggested by Malevich

(1969) and Cuzick (1976) and was used in Kedem (1980), Ch. 7, in deriving

the asymptotic distribution of D I,. The extension to Dk, N is immediate

and will not be reproduced here. It follows that when Pk is absolutely

summable D is asymptotically normal with approximate variance given
k, N

by (10), and hence approximate 95% probability limits for Dk, N are

11

(k) +1
(N-l)p ± 1.96{Var D k,}2 (12)

where Var(Dk,N) is given by (10), and p(k) is as in (8). (12) provides

a graphical means for assessing the similarity or dissimilarity between

processes as expressed by their oscillatory information by way of higher

order crossings. Several examples follow.

Table 4 gives the probability limits (12) for three processes whose

data are given in an appendix in Priestley (1981). It is seen that the

HOC obtained from these records with N =450 fail well within the proba-

bility limits. The gralbical display of the HOC and the limits (12) of

these dataaregiven in Figure 1, and show graphically tile similarity of

the observed data and the hypothesized processes. At the same time the

figure shows the dissimilarity or the distance of the particular AR(2)
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and ARMA(2,2) under consideration from white noise, and also the dis-

similarity of these AR(2) and ARMA(2,2). In particular, the rates of

increase in the D. displayed by the three processes are different
j450

and serve as a fast discrimination feature.

Rounded 95% Rounded
probability limits ED. Dj, 450 j, 450

203 246 225 221
282 317 299 299
313 345 329 328
330 361 346 348
342 372 357 355
351 380 365 363

a) White noise: Zt = t

178 204 191 190
205 230 217 214
227 255 241 253
252 282 267 278
277 308 292 300
299 331 315 314

b) Zt = 0.4Z - 0.7Z +u
b)t-1 ~ t-2 + t

384 411 397 398
391 415 403 403
394 418 406 407
397 419 408 411

4 398 421 410 411

400 422 411 411

c) Zt 
= -1.4Z - 0.5Z +u - 0.2u -O.lu

Table 4. Observed D. in records given in an Appendix in

Priestley (1981). The ARMA(2,2) series c) contains a

missing observation which was replaced by 0.0.

u" N(0,1), independent.

. . .
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4 0 0 4 0 04e" .. .-- -r.. .,
.'i - -

3,,. 5 0 ""
300 LIMITS -00

'00

3 4 5 6

a) Observed D. from white b) Observed D, from an
,450 ,450

noise and their theoretical AR(2) series and their

limits (12). theoretical limits (12).

Q P , 2. L I M I T S

c)' Obere D foan iRA22 sre n

4j,450

"00~~- - .....

their theoretical limits (12).

Figure 1. HOC representation for the three series in Table 4. In each
case the theoretical limits (12) capture the correct curve
obtained from observed D ,450 from the indicated series.

(The dark lines mark the probability limits.)

1.%
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Our next example concerns a HOC diagnostic check for time series

models as applied to the temperature series C in Box and Jenkins (1976).

Our first step is to see whether the centered series and its first dif-

ference are close to being white noise. A quick glance at Figure 2-(a)

shows that the series and its difference are far from being white as

their HOC do not fall within the white noise limits with N =212. On

the other hand, the |{OC of the fitted model (VZt = 0.82VZ + u

suggested by Box and Jenkins (1971), p. 293, are well within the proba-

bility limits (12) as seen from Figure 2-(b). The residuals HOC are

given in Figure 2-(c) and are shown to fall well within the white noise

limits except for D1,212 which is still very close to being "in". Thus

based on the oscillatory properties of the differenced series and the

corresponding residuals it is seen that the fitted model is reasonable.

95% limits for 95% limits for Dj,212 from Dj,212 from Dj,212 from the
white noise AR(1), q=0.82 z - z resiuals

t V %t  - O .82VZtL-

1 91 118 28 54 5 48 89
2 129 153 98 125 48 105 139
3 143 166 129 153 105 137 155
4 152 173 144 166 137 153 168
5 158 178 152 173 153 166 172
6 162 182 158 178 166 172 171

Table 5. Observed HOC from the temperature series C in Box & Jenkins
(1976) and probability limits for two models. (N =212). The
HOC from VZt fall within the AR(1) limits. The residuals HOC
suggest that the residuals very much resemble white noise.

-A,

4
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15WN LI M T1 7 FiFPs I' L IM II S

15 W I I E~

22 3 4 1 4 5

a) HOC f rom Z~ -Z and VZ b) HOC from VZ tfall inside the

fall outside the white limits (12) under the model

noise limits. Vzt 0 .82VZ + u.~t-l t

W Nt L I NMITS

1 tf

75

1 3 4 5

c) HOC of the residuals series resemble very
much HOC of white noise.

Figure 2. HOC analysis of the tempera-ture series C in lox & Jenkins
- (1976) with N =212. (The dark lines mark the probability

limits.)

%- **~.J*** ~~)



17

Our last example concerns periodic data plus noise. In many appli-

cations a major problem is whether an observed series is made of noise

only or of signal plus noise. The oscillation in periodic signals plus

noise is usually different from the oscillation displayed by white noise

and c~n be captured very well by HOC. Consider the sunspot series given

and analyzed in Anderson (1971). it is well established that this series

contains several significant periodic components, and from our point of

view it is interesting to measure the deviation of this series from pure

white noise as depicted by higher order crossings. By appealing to the

limits (12) with N = 155 we can see from Figure 3 that the series does

indeed contain a "signal" and the hypothesis of white noise is rejected.

That is, the sunspot series does not oscillate as white noise.

95% probability j from
limits for white noise j,155 rzt -Z

1 65 89 31
2 93 113 36
3 103 122 81
4 110 128 107
5 114 131 119
6 117 134 121

Table 6. Observed HOC from the sunspot series
(N -155) in Anderson (1971) and proba-
bility limits for white noise. The
hypothesis (f noise is rejected.

t..

. ; _. , .. , , , .. . . ., ., ...,- , .. . .. .. , .. . .. , , ., . . . . .. .. .,.,. .-< -. , ,., . .I
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SL I I- I I T

- -I

:.- t 2'1 5 ,

F N T Fpt.p S- F0T E R I--

2 5

Falurey_3. D),15 5 from Z tZ derived from the sun-

spot series. The first four HOC fall

outside the white noise limits. (The

dark lines mark the probability limits.)

%-

'. "

AQ,

-a,



19

5. Some Power Calculation

In many cases D and D2 alone are capable of discrimination between

time series models. However, there are many examples in which the Liter

D. do the job while DI, D2 fail. In order to illustrate this point we

consider several examples of autoregressive moving average models where

the hypothesis is that of white noise. At the same time the examples

indicate the power of our graphical method obtained from 50 independent

series each of length N =450. In each case we bring in the results of'

10 realizations in the form of binary row vectors of length 6. Each

realization produces D . D and when a certain D falls

1 ,4 5 0,.. 6,450 j,450

outside the probability limits (12) for the white noise case, it is in-

dicated by "I" for success. Otherwise this is indicated by "0". Thus

110011 means that D, D2 , DS, D6 fall outside the limits (12) for the

white noise case, while D3, D4 fall inside these limits. Clearly, for

series which are not white noise we expect to see many i's. The closer

the process is to white noise the harder is the discrimination problem

and the ratio of O's increases. It is seen from Figure 4 that there

are series which are far from being white but their actual axis-

crossings behave as those of white noise. On the other hand, the

difference in oscillation is captured by higher order crossings as seen

in particular from (g) and (1). The power is seen to inc-rease with more

significant parameters as is well expected.

S.%
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.0.
00000 0 010000 000000 100000
000000 000000 011100 110000

000000 000000 100000 1 00000
O000 00 000000 O00000 0 11 11 1
010000 01000 0 100000 110000
0 00 0 00 0 10 0 00 0 00 0 00 1 10 00 0

000000 000000 100000 011000
0 O0000 000000 100000 110000
000000 000000 110000 100000

000000 011001 0000 00 000 000

a) White noise b) AR(1), *=0.05 c) MA(1), 0 =0.1 d) AR(1), ,=.2

power = 0.1 power = 0.26 power = 0.4 power = 0.9

110000 111101 011110

111000 010100 0011.10
111000 011111 011111
110000 010000 011111
111110 000111 000000

111101 001101 0 0 0001

110101 000011 011000
110001 011111 001100
111111 011110 000111

111000 011100 000100

e) AR(1), =0.5 f) AR(2), j =.1, 2=-0.15 g) ARMA(2,2), p = 2, (l).=-.2

power 1 power = 0.88 01 = .2, 02 =.'1 power = 0.88

110100 011111
010000 011111
100000 011111
000000 011111
1 0 1 111 0 11 11 1

110011 011111
100000 011111

100000 011 111
110000 011111
1 11 1 01 0 1 111 1

h) ARMA(1,1), (P =.1, 01 =--i i) ARMA(2,2), (PI =.1, =-.4, 0l =0

power = 0.86 e2 = .3, power =

Figure 4. Ten typical binary vectors obtained from I) j,450' i = .... 6, in

relation to the white noise limits from (12). The power was esti-

mated from 50 such binary vectors. 1 means corresponding ). ,

I:. lltil ;id I, Iht, limits. o1It'rlwi sc 0 is rcorded.

.
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